102 research outputs found

    Adaptive feedback analysis and control of programmable stimuli for assessment of cerebrovascular function

    No full text
    The assessment of cerebrovascular regulatory mechanisms often requires flexibly controlled and precisely timed changes in arterial blood pressure (ABP) and/or inspired CO2. In this study, a new system for inducing variations in mean ABP was designed, implemented and tested using programmable sequences and programmable controls to induce pressure changes through bilateral thigh cuffs. The system is also integrated with a computer-controlled switch to select air or a CO2/air mixture to be provided via a face mask. Adaptive feedback control of a pressure generator was required to meet stringent specifications for fast changes, and accuracy in timing and pressure levels applied by the thigh cuffs. The implemented system consists of a PC-based signal analysis/control unit, a pressure control unit and a CO2/air control unit. Initial evaluations were carried out to compare the cuff pressure control performances between adaptive and non-adaptive control configurations. Results show that the adaptive control method can reduce the mean error in sustaining target pressure by 99.57 % and reduce the transient time in pressure increases by 45.21 %. The system has proven a highly effective tool in ongoing research on brain blood flow control

    Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability

    No full text
    Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a convenient and much used method, there remains uncertainty about its reliability. We tested the effects of increasing ABP variability, provoked by a modification of the thigh cuff method, on the ability of the autoregulation index to discriminate between normal and impaired CA, using hypercapnia as a surrogate for dynamic CA impairment. In 30 healthy volunteers, ABP (Finapres) and CBF velocity (CBFV, transcranial Doppler) were recorded at rest and during 5% CO(2) breathing, with and without pseudo-random sequence inflation and deflation of bilateral thigh cuffs. The application of thigh cuffs increased ABP and CBFV variabilities and was not associated with a distortion of the CBFV step response estimates for both normocapnic and hypercapnic conditions (P=0.59 and P=0.96, respectively). Sensitivity and specificity of CA impairment detection were improved with the thigh cuff method, with the area under the receiver-operator curve increasing from 0.746 to 0.859 (P=0.031). We conclude that the new method is a safe, efficient, and appealing alternative to currently existing assessment methods for the investigation of the status of CA

    Mitigation of Ergot Vasoconstriction by Clover Isoflavones in Goats (\u3cem\u3eCapra hircus\u3c/em\u3e)

    Get PDF
    Ergot alkaloids produced by a fungal endophyte (EpichloĂ« coenophiala; formerly Neotyphodium coenophialum) that infects tall fescue (Lolium arundinaceum) can induce persistent constriction of the vasculature in ruminants, hindering their capability to thermo-regulate core body temperature. There is evidence that isoflavones produced by legumes can relax the vasculature, which suggests that they could relieve ergot alkaloid-induced vasoconstriction and mitigate the vulnerability to severe heat stress in ruminants that graze tall fescue. To test if isoflavones can relieve alkaloid-induced vasoconstriction, two pen experiments were conducted with rumen-fistulated goats (Capra hircus) to determine with ultrasonograpy if isoflavones can (1) promote vascular compliance by countering alkaloid-induced vasoconstriction and (2) relieve already imposed alkaloid-induced vasoconstriction. Goats were fed ad libitum chopped orchardgrass (Dactylis glomerata)–timothy (Phleum pratense) hay prior to conducting the experiments. Measures of carotid and interosseous luminal areas were obtained pre- (baseline) and post-ruminal infusions in both experiments with goats being fed the hay, and for blood flow rate in the carotid artery in Experiment 2. Responses to infusion treatments were evaluated as proportionate differences from baseline measures. Peak systolic velocity, pulsatility index, and heart rate were measured on the last day on treatment (DOT) in Experiment 1, and on all imaging sessions during Experiment 2. For Experiment 1, rumens were infused with ground toxic fescue seed and isoflavones in Phase A and with only the toxic seed in Phase B. The infusion treatments were switched between phases in Experiment 2, which employed a fescue seed extract having an ergot alkaloid composition equivalent to that of the ground seed used in Experiment 1. During Experiment 1, luminal areas of carotid and interosseous arteries in Phase A did not deviate (P \u3e 0.1) from baselines over 1, 2, 3, and 4 DOT, but the areas of both declined linearly from baselines over 1, 2, 3, and 4 DOT in Phase B. By 6, 7, and 8 DOT in Experiment 2, luminal areas of the arteries and flow rate declined from baselines with infusions with the only seed extract in Phase A, but luminal areas and flow rate increased over 4, 5, and 6 DOT with the additional infusion of isoflavones. Peak systolic velocity and heart rate were not affected by treatment in either experiment, but were highest when infused with only ergot alkaloids in both experiments. Treatment with isoflavones was demonstrated to relax the carotid and interosseous arteries and reduce resistance to blood flow. Results indicate that isoflavones can relax persistent vasoconstriction in goats caused by consumption of ergot alkaloids, and mitigate the adverse effect that ergot alkaloids have on dry matter intake

    Exacerbation of methamphetamine-induced neurochemical deficits by melatonin

    Get PDF
    ABSTRACT Methamphetamine (METH), administered in large, repeated doses, compromises the dopaminergic and serotonergic systems as indicated by prolonged suppression of tyrosine hydroxylase and tryptophan hydroxylase activity and concurrent decreases in the content of dopamine and 5-hydroxytryptamine. Because dopamine is necessary for these dopaminergic and serotonergic deficits we postulated that dopamine and/or its reactive metabolites are responsible for these degenerative alterations. Because we previously demonstrated that in vitro reducing conditions reverse the decrease in tryptophan hydroxylase activity, we reasoned that melatonin, a purported endogenous antioxidant, may alter this response. Rats were treated with METH and/or melatonin and trytophan hydroxylase activity and 5-hydroxytryptamine content were assessed; tyrosine hydroxylase activity and dopamine content were also measured. Not only did melatonin not prevent METH-induced deficits in serotonergic and dopaminergic parameters, but coadministration of melatonin with METH actually enhanced most of the monoaminergic effects of METH. This enhancing effect could not be attributed to alteration of body temperature. Because METH abuse causes insomnia and melatonin is promoted in some countries for insomnia, the implications of the interaction between these two drugs could be clinically important. When administered in large, repeated doses, METH and its congeners, cause marked neurochemical deficits in certain dopaminergic and serotonergic nerve terminals of the brain; these include severely compromised activity of both TH Because we hypothesize that the neurochemical deficits induced by METH are attributed to oxidative stress associated with DA and/or its reactive metabolites and because melatonin is characterized as an endogenous antioxidant Materials and Methods Animals and treatments. Male Sprague-Dawley rats (Simonsen Laboratories Inc., Gilford, CA) weighing 200 to 240 g were housed (three to four per cage) in a temperature-controlled room (23°C) with a 12-hr light-dark cycle. Access to food and water was ad libitum. In the first experiment rats received injections with METH (5 or 15 mg/kg, s.c.) or vehicle (0.9% NaCl) at 6-hr intervals for a total of five administrations. Fifteen min before, and 2 hr after the METH injections, the rats received injections with melatonin (25 mg/kg, i.p., Sigma Chemical Co., St. Louis, MO) or vehicle (30% ethanol i

    Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties

    Get PDF
    Superhydrophobic surfaces combine high aspect ratio micro- or nano-topography and hydrophobic surface chemistry to create super water-repellent surfaces. Most studies consider their effect on droplets, which ball-up and roll-off. However, their properties are not restricted to modification of the behaviour of droplets, but potentially influence any process occurring at the solid-liquid interface. Here, we highlight three recent developments focused on the theme of immersed superhydrophobic surfaces. The first illustrates the ability of a superhydrophobic surface to act as a gas exchange membrane, the second demonstrates a reduction in drag during flow through small tubes and the third considers a macroscopic experiment demonstrating an increase in the terminal velocity of settling spheres

    Project ACHIEVE – Using Implementation Research to Guide the Evaluation of Transitional Care Effectiveness

    Get PDF
    Background: Poorly managed hospital discharges and care transitions between health care facilities can cause poor outcomes for both patients and their caregivers. Unfortunately, the usual approach to health care delivery does not support continuity and coordination across the settings of hospital, doctors’ offices, home or nursing homes. Though complex efforts with multiple components can improve patient outcomes and reduce 30-day readmissions, research has not identified which components are necessary. Also we do not know how delivery of core components may need to be adjusted based on patient, caregiver, setting or characteristics of the community, or how system redesign can be accelerated. Methods/design: Project ACHIEVE focuses on diverse Medicare populations such as individuals with multiple chronic diseases, patients with low health literacy/numeracy and limited English proficiency, racial and ethnic minority groups, low-income groups, residents of rural areas, and individuals with disabilities. During the first phase, we will use focus groups to identify the transitional care outcomes and components that matter most to patients and caregivers to inform development and validation of assessment instruments. During the second phase, we will evaluate the comparative effectiveness of multi-component care transitions programs occurring across the U.S. Using a mixed-methods approach for this evaluation, we will study historical (retrospective) and current and future (prospective) groups of patients, caregivers and providers using site visits, surveys, and clinical and claims data. In this natural experiment observational study, we use a fractional factorial study design to specify comparators and estimate the individual and combined effects of key transitional care components. Discussion: Our study will determine which evidence-based transitional care components and/or clusters most effectively produce patient and caregiver desired outcomes overall and among diverse patient and caregiver populations in different healthcare settings. Using the results, we will develop concrete, actionable recommendations regarding how best to implement these strategies. Finally, this work will provide tools for hospitals, community-based organizations, patients, caregivers, clinicians and other stakeholders to help them make informed decisions about which strategies are most effective and how best to implement them in their communities. Trial registration: Registered as NCT02354482 on clinicaltrials.gov on 1/29/201

    Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity in the assessment of dynamic cerebral autoregulation

    Get PDF
    Despite advances in modelling dynamic autoregulation, only part of the variability of cerebral blood flow velocity (CBFV) in the low frequency range has been explained. We investigate whether a multivariate representation can be used for this purpose. Pseudorandom sequences were used to inflate thigh cuffs and to administer 5% CO2. Multiple and partial coherence were estimated, using arterial blood pressure (ABP), end-tidal CO2 (EtCO2) and resistance area product as input and CBFV as output variables. The inclusion of second and third input variables increased the amount of CBFV variability that can be accounted for (p  <  10−4 in both cases). Partial coherence estimates in the low frequency range (<0.07 Hz) were not influenced by the use of thigh cuffs, but CO2 administration had a statistically significant effect (p  <  10−4 in all cases). We conclude that the inclusion of additional inputs of a priori known physiological significance can help account for a greater amount of CBFV variability and may represent a viable alternative to more conventional non-linear modelling. The results of partial coherence analysis suggest that dynamic autoregulation and CO2 reactivity are likely to be the result of different physiological mechanisms

    Coherent averaging of pseudorandom binary stimuli: is the dynamic cerebral autoregulatory response symmetrical?

    Get PDF
    Objective: Previous studies on cerebral autoregulation have shown the existence of hemispheric symmetry, which may be altered in stroke and traumatic brain injury. There is a paucity of data however on whether the response is symmetrical between those disturbances that cause cerebral hyperperfusion, to those that cause hypoperfusion. Our aim was to investigate whether the responses of cerebral autoregulation to haemodynamic stimuli of different directions are symmetrical. &#13; Approach: Using a previously described assessment method, we employed coherent averaging of the cerebral blood flow velocity (CBFV) responses to thigh cuff inflation and deflation, as driven by pseudorandom binary sequences, whilst simultaneously altering the inspired CO2. The symmetry of the autoregulatory response was assessed with regards to two parameters, its speed and gain. Using the first harmonic method, critical closing pressure (CrCP) and resistance area product (RAP) were estimated, and the gain of the autoregulatory response was calculated by performing linear regression between the coherent averages of arterial blood pressure (ABP) and CBFV, ABP and CrCP and finally ABP and RAP. A two-way repeated measures ANOVA was used to assess for the effect of the direction of change in ABP and the method of CO2 administration. &#13; Main results: Our results suggest that whilst the direction of ABP change does not have a significant effect, the effect of CO2 administration method is highly significant (p&lt;10-4). &#13; Significance: This is the first report to report to demonstrate the symmetry of the autoregulatory response to stimuli of different directions as well as the short term dynamics of RAP and CrCP under intermittent and constant hypercapnia. As haemodynamic stimulus direction does not appear to have an influence, our findings validate previous work done using different assessment methods

    An introduction to superhydrophobicity

    Get PDF
    This paper is derived from a training session prepared for COST P21. It is intended as an introduction to superhydrophobicity to scientists who may not work in this area of physics or to students. Superhydrophobicity is an effect where roughness and hydrophobicity combine to generate unusually hydrophobic surfaces, causing water to bounce and roll off as if it were mercury and is used by plants and animals to repel water, stay clean and sometimes even to breathe. The effect is also known as The Lotus EffectÂź and Ultrahydrophobicity. In this paper we introduce many of the theories used, some of the methods used to generate surfaces and then describe some of the implications of the effect

    Climatological mean circulation at the New England shelf break

    Get PDF
    Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739
    • 

    corecore